Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Medical Journal ; (24): 44-62, 2024.
Artigo em Inglês | WPRIM | ID: wpr-1007714

RESUMO

Cancer cachexia is a multi-organ syndrome and closely related to changes in signal communication between organs, which is mediated by cancer cachexia factors. Cancer cachexia factors, being the general name of inflammatory factors, circulating proteins, metabolites, and microRNA secreted by tumor or host cells, play a role in secretory or other organs and mediate complex signal communication between organs during cancer cachexia. Cancer cachexia factors are also a potential target for the diagnosis and treatment. The pathogenesis of cachexia is unclear and no clear effective treatment is available. Thus, the treatment of cancer cachexia from the perspective of the tumor ecosystem rather than from the perspective of a single molecule and a single organ is urgently needed. From the point of signal communication between organs mediated by cancer cachexia factors, finding a deeper understanding of the pathogenesis, diagnosis, and treatment of cancer cachexia is of great significance to improve the level of diagnosis and treatment. This review begins with cancer cachexia factors released during the interaction between tumor and host cells, and provides a comprehensive summary of the pathogenesis, diagnosis, and treatment for cancer cachexia, along with a particular sight on multi-organ signal communication mediated by cancer cachexia factors. This summary aims to deepen medical community's understanding of cancer cachexia and may conduce to the discovery of new diagnostic and therapeutic targets for cancer cachexia.


Assuntos
Humanos , Caquexia/patologia , Ecossistema , Neoplasias/metabolismo , Síndrome , Músculo Esquelético/patologia
2.
Chinese Medical Journal ; (24): 974-985, 2023.
Artigo em Inglês | WPRIM | ID: wpr-980853

RESUMO

BACKGROUND@#Progressive lipid loss of adipose tissue is a major feature of cancer-associated cachexia. In addition to systemic immune/inflammatory effects in response to tumor progression, tumor-secreted cachectic ligands also play essential roles in tumor-induced lipid loss. However, the mechanisms of tumor-adipose tissue interaction in lipid homeostasis are not fully understood.@*METHODS@#The yki -gut tumors were induced in fruit flies. Lipid metabolic assays were performed to investigate the lipolysis level of different types of insulin-like growth factor binding protein-3 (IGFBP-3) treated cells. Immunoblotting was used to display phenotypes of tumor cells and adipocytes. Quantitative polymerase chain reaction (qPCR) analysis was carried out to examine the gene expression levels such as Acc1 , Acly , and Fasn et al .@*RESULTS@#In this study, it was revealed that tumor-derived IGFBP-3 was an important ligand directly causing lipid loss in matured adipocytes. IGFBP-3, which is highly expressed in cachectic tumor cells, antagonized insulin/IGF-like signaling (IIS) and impaired the balance between lipolysis and lipogenesis in 3T3-L1 adipocytes. Conditioned medium from cachectic tumor cells, such as Capan-1 and C26 cells, contained excessive IGFBP-3 that potently induced lipolysis in adipocytes. Notably, neutralization of IGFBP-3 by neutralizing antibody in the conditioned medium of cachectic tumor cells significantly alleviated the lipolytic effect and restored lipid storage in adipocytes. Furthermore, cachectic tumor cells were resistant to IGFBP-3 inhibition of IIS, ensuring their escape from IGFBP-3-associated growth suppression. Finally, cachectic tumor-derived ImpL2, the IGFBP-3 homolog, also impaired lipid homeostasis of host cells in an established cancer-cachexia model in Drosophila . Most importantly, IGFBP-3 was highly expressed in cancer tissues in pancreatic and colorectal cancer patients, especially higher in the sera of cachectic cancer patients than non-cachexia cancer patients.@*CONCLUSION@#Our study demonstrates that tumor-derived IGFBP-3 plays a critical role in cachexia-associated lipid loss and could be a biomarker for diagnosis of cachexia in cancer patients.


Assuntos
Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Meios de Cultivo Condicionados/farmacologia , Caquexia/patologia , Neoplasias Gastrointestinais , Somatomedinas/metabolismo , Insulinas/metabolismo , Lipídeos
6.
Braz. j. med. biol. res ; 34(9): 1161-1167, Sept. 2001. ilus, tab
Artigo em Inglês | LILACS | ID: lil-290397

RESUMO

Cancer cachexia causes disruption of lipid metabolism. Since it has been well established that the various adipose tissue depots demonstrate different responses to stimuli, we assessed the effect of cachexia on some biochemical and morphological parameters of adipocytes obtained from the mesenteric (MES), retroperitoneal (RPAT), and epididymal (EAT) adipose tissues of rats bearing Walker 256 carcinosarcoma, compared with controls. Relative weight and total fat content of tissues did not differ between tumor-bearing rats and controls, but fatty acid composition was modified by cachexia. Adipocyte dimensions were increased in MES and RPAT from tumor-bearing rats, but not in EAT, in relation to control. Ultrastructural alterations were observed in the adipocytes of tumor-bearing rat RPAT (membrane projections) and EAT (nuclear bodies)


Assuntos
Animais , Masculino , Ratos , Adipócitos/metabolismo , Tecido Adiposo/citologia , Caquexia/metabolismo , Carcinoma 256 de Walker/metabolismo , Adipócitos/ultraestrutura , Tecido Adiposo/metabolismo , Caquexia/patologia , Carcinoma 256 de Walker/patologia , Epididimo/citologia , Epididimo/metabolismo , Ácidos Graxos/análise , Lipídeos/análise , Mesentério/citologia , Mesentério/metabolismo , Peritônio/citologia , Peritônio/metabolismo , Proteínas/análise , Ratos Wistar , Espaço Retroperitoneal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA